Deep learning has been a popular research area due to major successes in perception tasks such as speech recognition and object classification.
In the first part of the talk, Oriol Vinyals will give a brief overview of the main concepts of deep learning. He will focus on recent advances on a topic that his group has been especially actively working on: natural language processing and understanding using Recurrent Neural Networks (RNNs).
In the past year, RNNs have done exceptionally well at learning to decode sequences of symbols from input signals. In the main part of this talk, Oriol Vinyals will review some recent successes on machine translation, image understanding, and beyond and finish the talk with a discussion of some of the next challenges for deep learning, and some exciting research and applications that people in the field have started looking at.
Oriol Vinyals is a Research Scientist at Google. He works in deep learning with the Google Brain team. Oriol holds a Ph.D. in EECS from the University of California, Berkeley, and a Masters’s degree from the University of California, San Diego. He is a recipient of the 2011 Microsoft Research Ph.D. Fellowship. He was an early adopter of the new deep learning wave at Berkeley, and in his thesis, he focused on non-convex optimization and recurrent neural networks. At Google Brain, he continues working on his areas of interest, which include artificial intelligence, with particular emphasis on machine learning, language, and vision.